

Structures Research Update

M. H. Ansley Structures Research Center

Will Potter

Presentation Outline

- FDOT Structures Research Center
- Flexible Filler (Unbonded PT Tendons)
- Aluminum Lightweight Deck
- External FRP Repair Durability
- Breakaway Sign
- Empirical Deck for Phased Construction and Widening
- Flat Slab Bridges

Structures Research Center

- Structures Research
 - Internal
 - University/Consultant
- Bridge Load Testing

Flexible Filler Research

3:15 pm this afternoon – Rick Vallier presenting

- Open Steel Grid Existing Concerns
 - Skid Resistance
 - Corrosion (Open)
 - Fatigue
 - Noise
 - Ride Quality
 - Bicycle Safety

Lightweight Aluminum Deck

- Alternatives Evaluation:
 - FRP, SPS, UHPC Waffle Deck, and Aluminum Orthotropic.
 - 40 Different Evaluation Criteria
 - Aluminum Deck Scored the Highest
- Advantages:
 - Solid Surface
 - Weight Neutral (21-22 psf)
 - Durability and Service Life
 - Configuration
 - Available Design Spec.
 - Material Familiarity
 - History
 - Research
 - Previous Installations

- Disadvantages:
 - High Initial Cost
 - New Use of Product
 - Coeff. Of Thermal Expansion
 - Wearing Surface
 - Galvanic Corrosion
 - Proprietary Product

Evolution of the Deck Panels

esign Training Expo

- Infinite Range of Panel Widths
- 32-ft Max Panel Length
- Extrusions Friction Stir Welded (FSW) to Create Panels

TYPICAL PANEL: (3) MALE-FEMALE, (1) MALE-MALE, (2) FULL END EXTRUSIONS

H&H PROPOSED PANEL DETAILS

- Friction Stir Welding (FSW)
 - Solid-State, Hot Shear Joining Process
 - Complex Thermo-Mechanical Process
 - Varying temperature (0.7 to 0.9 melting point)

- Friction Stir Welding (FSW)
 - Higher Quality Joint
 - Flaws Possible
 - Various Items Influence Quality
 - Quality Control/Weld Inspection
 - AWS D1.2 Structural Welding Code Aluminum (2014)

- Heavy Vehicle Simulator Testing
 - 11 kip wheel load
 - 600,000 cycles

Heavy Vehicle Simulator Testing

- Objective
 - Evaluate performance of FRP composite repair:
 - Added Strength
 - Durability
 - Effects on chloride concentrations

- Bond Pull-Off Test (ASTM)
- Infrared (IR) Scanning
- Chloride Cores
- Strength Cores

- Carbonation
- Steel Tensile Test
- FRP Tensile Test

12% increase

8% increase

2016 Pesign Training Expo

- Additional Testing Completed
- Field Investigations Performed

University Blvd Bridge

Chaffee Road Bridge

Port of Tampa

Phillips Lane

Turkey Creek

Dickman Road

Scaling and Validation of Breakaway Connection

Wind load:

Sign survival

Vehicle impact:

Occupant survival

MASH-compliant 1100C surrogate test vehicle

2006 Kia Rio (~1100 kg, ~2420 lbs)

1100C crushable-nose surrogate vehicle (impactor)

FDOT impact pendulum

- Initial Research
- W12x40 Post
- Additional complexities with welds and elements

- Current Research Design
- W10x26
- Greatly reduced complexities in fabrication/installation

- Impact Performance Criteria Set by AASHTO MASH
 - Occupant Impact Velocity and Occupant Ridedown Acceleration
 - 19 mph low speed impact at 0 and 25 degree impact angles
- Additional testing planned for low and medium capacity breakaway connections

Empirical Deck for Phased 'Construction and Widening

- AASHTO-LRFD Specifications
 - Empirical Design (9.7.2)
 - Traditional Design (9.7.3) strip method
- Current FDOT Structures Design Guidelines
 - Empirical Deck Design is not allowed (SDG 4.2.4)
 - Incorporated into the 2010 SDG
 - Rationale: potential for future widening or phased construction and associated traffic control impact
- Empirical Deck Steel per AASHTO LRFD
 - Bottom Layer 0.27 in²/ft (0.28% 8" deck)
 - Top Layer 0.18 in²/ft (0.19% 8" deck)
 - Spacing not to exceed 18 inches

- Empirical Deck Methodology
 - Internal Arching/Compressive Membrane Action
 - Failure mechanism in concrete bridge decks is generally punching shear.

Phased Construction and Widening

AASHTO Design Conditions

There is an overhang beyond the centerline of the outside girder of at least 5.0 times the depth of the slab; this condition is satisfied if the overhang is at least 3.0 times the depth of the slab and a structurally continuous concrete barrier is made composite with the overhang;

Cross-frames or diaphragms are used throughout the cross-section at lines of support;

- Use on Florida I-beam
 - Wide Top/Bottom Flanges/Increased Weak-axis Inertia
 - Allows for higher rigidity to assist in the arching action.
- Evaluation of Variables (Analytically)
 - Girder Spacing
 - Span Length
 - Slab Thickness
 - Concrete Strength f'c
 - Lateral Stiffness
 - Reinforcement Ratio

- Concept Deck Testing
 - FIB36 47-ft Girder Length
 - 14-ft Beam Spacing
 - 8-inch Deck Thickness
 - Simulated Widening
 - No Diaphragms or Thickened Slab
 - 2 Girder System
 - Load Area 10" x 20"
 - Deck Reinforcement #5 @ 12" 0.31 in²/ft
 - Top and Bottom Each Direction
 - 0.3% for both top and bottom (0.64% total)

- AASHTO Wheel Loads
 - (1.75)(16k)(1.33) = 37.2 kip
 - (1.0)(16k)(1.33) = 21.3 kip

- Development of SDG Language (Contingent)
 - Allow use of Empirical method on the Florida I-beam
 - Reinforcement Options
 - #5 @ 12" or #4 @ 8"
 - Stagger spacing of top and bottom reinforcement
 - Cross-frames or diaphragms are not required at the supports.
 - An overhang is not required for girders for the temporary condition of phased construction or widening.
 - Overhang design is the same as conventional decks.

Flat Slab Evaluation

- Objective
 - Evaluate the effective strip width distribution both analytically and thru field load testing.
 - Provide written guidance for the FDOT Bridge Load Rating Manual.

Flat Slab Evaluation

Bridge Load Test

esign Training

Questions

